

COMUNE DI MERCATO SAN SEVERINO PROVINCIA DI SALERNO

RIPRISTINO FUNZIONALE DELLA VASCA DI ASSORBIMENTO PEDEMONTANA COSCIA E DEL RELATIVO IMMISSARIO IN COMUNE DI MERCATO SAN SEVERINO (SA)

CIG: 87387271A7 CUP: J13H19000750001

STAZIONE APPALTANTE

Comune di Mercato San Severino (SA)

RUP: geom. Antonio De Filippo

PROGETTO ESECUTIVO

IMPRESA APPALTATRICE:

IMPRESA ESECUTRICE:

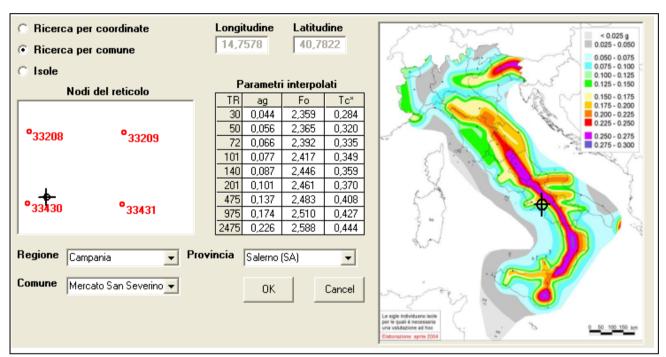
PROGETTISTA:

E_STR_05.5 - Opera di scarico: Modellazione sismica del sito

REVISIONE	DATA	DESCRIZIONE	<u> </u>					
00	MAR.2023	EMISSION	E					
	SCALA		DATA	CODICE GENE	RALE ELABORATO			
			MAR.2023	2206	ESE	E - STR	05.5	00

1 - PERICOLOSITA' SISMICA DEL SITO

Le indagini effettuate, permettono di classificare il profilo stratigrafico, ai fini della determinazione dell'azione sismica, di categoria:


C [C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti], basandosi sulla valutazione della velocità delle onde di taglio (V_{S30}) e/o del numero di colpi dello Standard Penetration Test (N_{SPT}) e/o della resistenza non drenata equivalente ($c_{u,30}$). Tutti i parametri che caratterizzano i terreni di fondazione sono riportati nei successivi paragrafi.

1.1 Modellazione geotecnica

Ai fini del calcolo strutturale, il terreno sottostante l'opera viene modellato secondo lo schema di Winkler, cioè un sistema costituito da un letto di molle elastiche mutuamente indipendenti. Ciò consente di ricavare le rigidezze offerte dai manufatti di fondazione, siano queste profonde o superficiali, che sono state introdotte direttamente nel modello strutturale per tener conto dell'interazione opera/terreno.

1.2 Pericolosità sismica

Ai fini della pericolosità sismica sono stati analizzati i dati relativi alla sismicità dell'area di interesse e ad eventuali effetti di amplificazione stratigrafica e topografica. Si sono tenute in considerazione anche la classe dell'edificio e la vita nominale.

Per tale caratterizzazione si riportano di seguito i dati di pericolosità come da normativa:

DATI GENERALI ANALISI SISMICA

									Dati gene	erali analis	si sismica
Ang	NV	CD	MP	Dir	TS	EcA	Ir _{Tmp}	C.S.T.	RP	RH	ξ
[°]											[%]
0	55	ND	63	Χ	-	c	N		NO	СТ	
0	55 ND ca	Ca	Υ	-	5	IN	C	NO	51	3	

LEGENDA:

- **Ang** Direzione di una componente dell'azione sismica rispetto all'asse X (sistema di riferimento globale); la seconda componente dell'azione sismica e' assunta con direzione ruotata di 90 gradi rispetto alla prima.
- **NV** Nel caso di analisi dinamica, indica il numero di modi di vibrazione considerati.
- CD Classe di duttilità: [A] = Alta [B] = Media [ND] = Non Dissipativa [-] = Nessuna.
- MP Tipo di struttura sismo-resistente prevalente: [ca] = calcestruzzo armato [caOld] = calcestruzzo armato esistente [muOld] = muratura esistente [muNew] = muratura nuova [muArm] = muratura armata [ac] = acciaio.
- **Dir** Direzione del sisma.
- **TS** Tipologia della struttura:
 - Cemento armato: [T 1C] = Telai ad una sola campata [T+C] = Telai a più campate [P] = Pareti accoppiate o miste equivalenti a pareti- [2P NC] = Due pareti per direzione non accoppiate [P NC] = Pareti non accoppiate [DT] = Deformabili torsionalmente [PI] = Pendolo inverso [PM] = Pendolo inverso intelaiate monopiano;
 - Muratura: [P] = un solo piano [PP] = più di un piano [C-P/MP] = muratura in pietra e/o mattoni pieni [C-BAS] = muratura in blocchi artificiali con percentuale di foratura > 15%;

									Dati gene	erali analis	si sismica
Ang	NV	CD	MP	Dir	TS	EcA	Ir _{Tmp}	C.S.T.	RP	RH	ξ
[°]											[%]

Acciaio: $[T\ 1C]$ = Telai ad una sola campata - [T+C] = Telai a più campate - [CT] = controventi concentrici diagonale tesa - [CV] = controventi concentrici a V - [M] = mensola o pendolo inverso - [TT] = telaio con tamponature.

- **Ecc** Eccentricità accidentale: [S] = considerata come condizione di carico statica aggiuntiva [N] = Considerata come incremento delle sollecitazioni.
- Ir_{Tmp} Per piani con distribuzione dei tamponamenti in pianta fortemente irregolare, l'eccentricità accidentale è stata incrementata di un fattore pari a 2: [SI] = Distribuzione tamponamenti irregolare fortemente [NO] = Distribuzione tamponamenti regolare.
- **C.S.T.** Categoria di sottosuolo: [A] = Ammassi rocciosi affioranti o terreni molto rigidi [B] = Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti [C] = Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti [D] = Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti [E] = Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D.
- **RP** Regolarità in pianta: [SI] = Struttura regolare [NO] = Struttura non regolare.
- **RH** Regolarità in altezza: [SI] = Struttura regolare [NO] = Struttura non regolare.
- ξ Coefficiente viscoso equivalente.
- **NOTE** [-] = Parametro non significativo per il tipo di calcolo effettuato.

DATI GENERALI ANALISI SISMICA - FATTORI DI COMPORTAMENTO

					Fattori di	Fattori di comportamento				
Dir	q'	q	q o	K _R	αu/α1	kw				
X	-	1,500	3,00	-	1,00	1,00				
Υ	-	1,500	3,00	-	1,00	1,00				
Z	-	1,000	-	-	-	-				

LEGENDA:

- q' Fattore di riduzione dello spettro di risposta sismico allo SLU ridotto (Fattore di comportamento ridotto relazione C7.3.1 circolare NTC)
- **q** Fattore di riduzione dello spettro di risposta sismico allo SLU (Fattore di comportamento).
- **q**₀ Valore di base (comprensivo di k_w).
- Fattore riduttivo funzione della regolarità in altezza : pari ad 1 per costruzioni regolari in altezza, 0,8 per costruzioni non regolari in altezza, e 0,75 per costruzioni in muratura esistenti non regolari in altezza (§ C8.5.5.1)..
- α_u/α_1 Rapporto di sovraresistenza.
- **k**_w Fattore di riduzione di q₀.

Stato Limite	Tr	a _g /g	Amplif. Stratigrafica		Fo	Fv	v T *c	Тв	Tc	T _D
Lillite			S s	C c						
	[t]						[s]	[s]	[s]	[s]
SLO	45	0,0538	1,500	1,543	2,364	0,740	0,311	0,160	0,480	1,815
SLD	75	0,0677	1,500	1,501	2,395	0,841	0,338	0,169	0,508	1,871
SLV	712	0,1576	1,464	1,401	2,497	1,338	0,417	0,195	0,585	2,230
SLC	1462	0,1959	1,401	1,383	2,540	1,518	0,434	0,200	0,601	2,384

LEGENDA:

- T_r Periodo di ritorno dell'azione sismica. [t] = anni.
- a_q/q Coefficiente di accelerazione al suolo.
- Ss Coefficienti di Amplificazione Stratigrafica allo SLO/SLD/SLV/SLC.
- **C**c Coefficienti di Amplificazione di Tc allo SLO/SLD/SLV/SLC.
- **F**₀ Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- **F**_V Valore massimo del fattore di amplificazione dello spettro in accelerazione verticale.
- T*c Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.
- **T**_B Periodo di inizio del tratto accelerazione costante dello spettro di progetto.
- T_c Periodo di inizio del tratto a velocità costante dello spettro di progetto.
- **T**_D Periodo di inizio del tratto a spostamento costante dello spettro di progetto.

CI Ed	V _N	V_R	Lat.	Long.	Q g	СТор	ST
	[t]	[t]	[°ssdc]	[°ssdc]	[m]		
3	50	75	40.785556	14.757778	146	T1	1,00

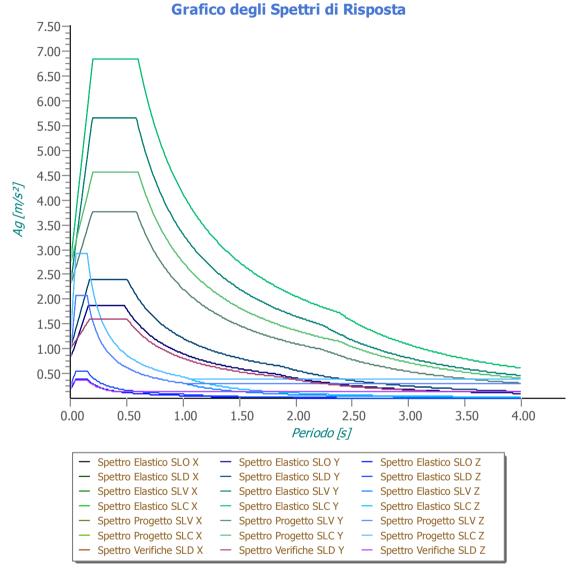
LEGENDA:

Cl Ed Classe dell'edificio

V_N Vita nominale ([t] = anni).
V_R Periodo di riferimento. [t] = anni.
Lat. Latitudine geografica del sito.
Longitudine geografica del sito.

Q_g Altitudine geografica del sito. **CTop** Categoria topografica (Vedi NOTE).

S_T Coefficiente di amplificazione topografica.


CI Ed	V _N	V_R	Lat.	Long.	\mathbf{Q}_{g}	СТор	S _T
	[t]	[t]	[°ssdc]	[°ssdc]	[m]		

NOTE [-] = Parametro non significativo per il tipo di calcolo effettuato.

Categoria topografica.

- T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i <= 15°.
- T2: Pendii con inclinazione media $i > 15^{\circ}$.
- T3: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} <= i <= 30^{\circ}$.
- T4: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $i > 30^{\circ}$.

Gli spettri utilizzati sono riportati nella successiva figura.

